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Stress inversion methods: are they based on faulty assumptions? 

D. D. POLLARD and S. D. SALTZER* 

Department of Geology and The Rock Fracture Project, Stanford University, Stanford, CA 94305 U.S.A. 

and 

ALLAN M .  RUBIN 

Department of Geological and Geophysical Sciences, Princeton University, Princeton, NJ 08544, U.S.A. 

(Received 2 December 1991; accepted in revised form 24 September 1992) 

Abstract---Stress inversion methods employed by structural geologists for estimating a regional stress tensor from 
populations of faults containing slickenlines rely on the basic assumption that slip on each fault plane occurs in the 
direction of maximum resolved regional shear stress. This premise ignores directional differences in fault 
compliance caused by fault shape, the Earth's surface or frictional anisotropy of the fault itself. It is also assumed 
that the regional stress field is homogeneous in space and time. Thus, perturbations in the local stress field caused 
by such things as material heterogeneities near the fault and mechanical interaction with nearby faults are not 
considered. Regional stresses may exercise dominant control on the slip direction; however local factors may 
perturb this field. We show how differences in fault compliance and local stress perturbations can result in a 
measureable difference between the direction of resolved shear stress and the direction of fault slip. Numerical 
modeling of common fault geometries in an elastic half space provides a means for evaluating the magnitude of 
this difference. We illustrate a few examples of geological circumstances under which the inversion techniques 
should be reliable, and a few where errors related to violations of the basic assumptions exceed those inherent to 
the data gathering and inverse techniques. 

INTRODUCTION AND BACKGROUND 

ONE of the principal goals of structural geology is to 
relate observed structures to the causative tectonic 
forces, thereby illuminating the origin and evolution of 
the structures and their role in geologic history. In 
typical 'forward' models the tectonic forces are de- 
scribed in terms of stresses acting at some distance from 
the locality where the structure might develop (e.g. 
Hafner 1951, Hubbert  1951, Ode 1957, Couples 1977, 
Muller & Pollard 1977). In the simplest cases this dis- 
tance is large compared to the characteristic length of 
the structure and these 'regional' stresses are assumed to 
be homogeneous, so they are completely specified by a 
single stress tensor. Note that the word regional in this 
context does not imply a particular scale, but rather a 
relative scale, one that is large compared to the struc- 
ture. The 'inverse' problem is to deduce the regional 
stress tensor from an existing geologic structure. For 
example, several computational methods exist for infer- 
ring the components of a regional stress tensor, tT~j, from 
populations of faults containing slickenlines (Carey & 
Brunier 1974, Etchecopar et al. 1981, Angelier et al. 

1982, Gephart & Forsyth 1984, Michael 1984, Reches 
1987). 

Stress inversion techniques have been applied to fault 
slickenline data from a variety of tectonic settings and 
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have produced results that are consistent and interpret- 
able. Because of this success, what was until recently a 
rather esoteric endeavor is now gaining popularity and 
the gathering of data for this purpose is becoming part of 
the routine measurements of structural geologists. With 
few exceptions (Carey-Gailhardis & Mercier 1987, 
Pershing 1989) the basic assumptions of these tech- 
niques have not been evaluated. 

To implement the inversion techniques, the maximum 
resolved regional shear stress direction is equated with 
the apparent slip direction on each fault. Slip is generally 
inferred from orientations of frictional grooves or 
fibrous lineations, termed slickenlines (Fleuty 1974), 
that are assumed to record the direction of the last 
increment of slip on a fault surface. Grooves result from 
the frictional sliding, and fibrous lineations result from 
alternating increments of opening, due to slip on irregu- 
lar faults, and mineral precipitation. The long axis of 
each fiber is parallel to the direction of slip and the sense 
of imbrication of fibrous sheets corresponds to the sense 
of motion on the fault (Marshak & Mitra 1988). Field 
data for each fault includes measurement of fault plane 
orientation, slip direction, and the sense of slip (All- 
mendinger 1989). 

The analysis of these data is based on the idealization 
of potential fault planes within a rock mass subject to a 
homogeneous stress state, a~, referenced to the regional 
co-ordinate system, x~ (Fig. 1). The regional stress 
tensor, or;, can be transformed to the equivalent stress 
tensor, o~-, referenced to the fault plane co-ordinate 
system, x~, using the standard tensor transformations 
(Means 1976): 
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r f Fig. 1. Global, xi, and potential fault plane, xi, co-ordinate systems; 
regional stress tensor, cry., resolved shear stress components, ~2 and 
0~3, and maximum shear stress, Ao; displacement discontinuity, Au. 

o f = CikCflOrkl, (1) 

where Cik and Cjl are the direction cosines defining the 
relative orientations of the regional and fault plane co- 
ordinate systems. For this three-dimensional problem 
the subscripts i, j, k and l take on values 1, 2 and 3, and 
repeated subscripts on the right-hand side indicate sum- 
mation over this range. The superscripts r and f refer to 
the regional and the fault plane co-ordinate systems. 
The two shear stress components, o~2 and of 3, acting on 
the potential fault plane can be resolved vectorially to 
find the direction of maximum shear stress, Ao, on this 
plane before slip. Because the stress field is presumed to 
be homogeneous, the fault locations, size and shape of 
the fault periphery are unimportant; only fault orien- 
tation plays a role in determining the direction and 
magnitude of the maximum resolved shear stress. 

Next, the assumption is invoked that slip, Au, will 
occur in the direction of the maximum resolved shear 
stress (Fig. 1). It follows that differently-oriented poten- 
tial faults in the homogeneous regional stress field will 
slip in different directions depending on their orien- 
tation relative to o[j. It also follows that the slip direction 
will be the same everywhere on a given plane because 
the resolved shear stress is homogeneous on each plane. 
In principle, if one knew the maximum resolved shear 
stress on several differently oriented planes, one could 
compute the regional stress tensor. In practice, only the 
orientation, not the magnitude, of the maximum 
resolved shear stress is inferred from slip directions on 
individual faults, so only part of the regional stress 
tensor can be estimated. 

The solution procedure that most workers have used 
involves setting up a system of linear equations based on 
the assumptions mentioned above for a population of 
faults, although some authors (Michael 1984, Reches 
1987) add additional constraints that are discussed be- 
low. This system of equations can be written in matrix 
form to obtain an equation of the type: 

Ax = y, (2) 

where A is a matrix containing combinations of direction 
cosines that are related to fault orientations (equation 
1), y is a vector containing shear stress information 
inferred from slip data for each fault, and x, the vector of 
unknowns, contains information related to the regional 
stress tensor. To solve for estimates of the unknown 
'model parameters',  a least-squares inversion of 
equation (2) would be (Menke 1984): 

x = [ A T A ] - I A T y .  (3) 

Some workers (Etchecopar et al. 1981, Armijo et al. 

1981, Angelier et al. 1982, Gephart & Forsyth 1984) 
compute a 'reduced stress tensor' composed of three 
direction cosines defining the orientations of the princi- 
pal stresses and a ratio of principal stress values, ~ ,  
defined as: 

qb - (o'~ - a~) (4) 

where the regional principal stresses are ~ > o[ > o[, so 
by definition, 0 < dp < 1. These four parameters do not 
define a unique tensor. To do so, further assumptions 
must be made about lithostatic stresses or magnitudes of 
shear stresses (Etchecopar et al. 1981). 

Following a slightly different approach, Michael 
(1984) constrains the magnitudes of the shear stress 
acting across each plane to be equal. Alternatively, 
Reches (1987) requires that the faults obey the Coulomb 
yield criterion and slip when the shear stress exceeds 
frictional resistance to slip. These two authors compute 
the magnitudes of the regional stress components nor- 
malized by the mean stress or the vertical stress. From 
these values, regional principal stress orientations and 
normalized magnitudes can be found. 

For all of the techniques reviewed above, the com- 
puted stress tensor is a model estimate of a homogene- 
ous stress state that is consistent with the observed 
faulting data, given the basic assumptions. The actual 
stress state could vary in space over the region of interest 
and in time over the duration of faulting. Typically, a 
'forward' problem specific to the collected data is solved 
to calculate errors in misfit between the model and the 
data. For example, Angelier (1979, 1989) and Michael 
(1984) compare the angular difference between the 
observed slip directions and the predicted maximum 
shear stress directions for the model stress state. 
Gephart & Forsyth (1984) and Gephart (1990) suggest 
that there is as much uncertainty in fault plane orien- 
tations as in slip directions. On the other hand, Reches et 

al. (1992) compute a different solution for each coef- 
ficient of friction. They then choose an 'optimum' model 
that minimizes the sum of the angular difference be- 
tween the computed regional stress tensor orientation 
and an 'ideal' stress tensor orientation for each fault. 

In summary, the first basic assumption for stress 
inversion techniques from multiple faults is that the 
regional stress tensor is spatially and temporally homo- 
geneous throughout the rock mass and over the history 
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of faulting. We have been careful to refer to the planes 
used in these techniques as potential fault planes be- 
cause, once slip occurs, the local stress field will change, 
and it will be quite heterogeneous (Pollard & Segall 
1987). For our evaluation, we take the approach of 
maintaining a homogeneous remote stress field and 
allowing local perturbations in the field caused by slip on 
the faults. The primary focus of this paper is to test the 
second basic assumption, that the slip on each fault 
surface has the same direction and sense as the maxi- 
mum shear stress resolved on each surface from the 
regional stress field. We suggest that many factors may 
produce a lack of correspondence between the direction 
of slip on a fault and the direction of maximum resolved 
regional shear stress. Below we describe and evaluate 
three such factors. 

EFFECT OF FAULT LENGTH-TO-WIDTH RATIO 

The geometry of the periphery of an isolated fault 
(Fig. 2), which does not approach or intersect other 
faults or the Earth's surface, can impose a deviation of 
the slip direction from the maximum resolved shear 
stress direction because slip is easier in the longer 
dimension, L, of the fault plane. The periphery is the 
bounding curve of the two surfaces that make up the 
fault. These two surfaces are located just to either side of 
the (x f, xf)-plane at x~ = 0 ÷ and x~ = 0- .  For simplicity 
we consider only a single slip event which produces a 
displacement discontinuity between these two surfaces 
everywhere on a rectangular fault. In general the magni- 
tude of this slip goes to zero at the periphery and varies 
continuously over the fault. 

For large length-to-width ratios, L / W  >> 1, faults 

x'2 

f 
J 

Fig. 2. A two-dimensional blade-like rectangular fault of width W = 
2a and length L. Shear stress drop, Aa, is at angle a to xx3 and has 
components,  Aa12 and Aa13. Displacement discontinuity (slip), Au, is 
at angle fl to x f and has components,  Au z and Au 3. The two fault 
surfaces are located at x~ = 0 ÷ and ~ = 0 , just to either side of the 

(x~, x~)-plane. 

behave like infinitely-long blade-like cracks and, for this 
special case, the relationship between slip direction and 
shear stress direction can be derived analytically for a 
homogeneous and isotropic elastic body (Pollard & 
Segall 1987). The regional and fault plane co-ordinate 
systems are parallel (Fig. 2) and the displacement dis- 
continuity components (slip components) between the 
two surfaces making up the fault are defined at a particu- 
lar position, (x f, xf3), of the fault as: 

Au2 = Uz(X~ = 0 +) - u2(x ~ = 0-) (5a) 

Au3 = u3(x~ = 0 +) -- u3(x~ = 0-) .  (5b) 

Here Au2 is the slip component parallel to the short 
dimension, W, and Au3 is the slip component parallel to 
the long dimension, L, for the fault shown in Fig. 2. For 
a fault with width W = 2a, in an elastic body with 
Poisson's ratio v, and elastic shear modulus/~, these two 
components are: 

AU 2 _ 2Ao12(1 -- V) [a 2 _ (xf)2] l /2  (6a) 
P 

AU 3 --  2Aa13 [a  2 - -  (xf )2]  1/2. (6b) 
P 

Note that the slip components for this two-dimensional 
fault both vary from maximum values at the center line, 
x f = 0, to zero at the periphery, x f = +a,  but there is no 
variation along the length of the fault. 

The quantities AO12 and Ao13 in equations (6a) and 
(6b) are the differences between the resolved remote 
shear stress components on the fault before slip, a~2 and 
a~3, and the shear stress acting on the fault surfaces after 
slip, a~2 and a~3: 

AO'I2 -= O'~2 --  0~2 (7a) 

At713 = a~3 --  O'~3. (7b) 

These differences in shear stress often are referred to as 
the 'stress drops' during faulting. Unlike the slip com- 
ponents (equations 6a and 6b), the shear stress drop 
components (equations 7a and 7b) are assumed to be 
uniformly distributed over the entire fault surface. The 
uniform stress drop is a prescribed boundary condition 
for the model and is chosen for simplicity. Nature might 
provide more complex loading conditions. 

The interesting conclusion to be drawn from 
equations (6a) and (6b) is that, for equal shear stress 
drops in the two co-ordinate directions (Ao12 = AOl3) ,  

the blade-like fault slips more in the direction of its 
length than in its width by the factor 1/(1 - v). We define 
the fault compliance as the ease with which slip occurs in 
a specific direction on the fault plane. In this simple 
example, the magnitude of the slip component in the 
longer direction, Au3,  is greater than the slip component 
in the shorter direction, Au2, so the fault is more com- 
pliant along its length. This result raises the possibility 
that the directions of maximum shear stress drop and 
resolved slip may not coincide on natural faults. 

Although we are concerned primarily with quasi- 
static elastic displacements, we note here that a 
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Fig. 3. Contours of the discrepancy angle, 7, on four deeply buried faults of different length-to-width ratios, L/W. 
Poisson's ratio is v = 0.25 and the boundary conditions are equal shear stress drop components, ART12 = AO13. y = 0 for a 

circular fault; compare to (a). 

dynamically-propagating fault rupture possesses the 
same anisotropy of fault compliance as the blade-like 
fault described above: That  is, near  the tip of the 
propagating rupture,  shear stresses oriented parallel to 
the rupture front produce displacements larger, by a 
factor 1/(1 - v), than those produced by shear stresses 
perpendicular to the rupture front (Rice 1980). If earth- 
quakes consist of the passage of a relatively narrow slip 
'pulse' (Heaton 1990), then the direction of slickenlines 
recorded during such an event will be influenced by the 
anisotropy of fault compliance. 

The next step is to quantify the possible angular 
difference between the directions of maximum shear 
stress drop and slip. The maximum shear stress drop, 
Aa, is oriented at angle a to the xf-direction (Fig. 2), 
where: 

a = tan -1 [ AO13 j 

The orientation of the slip, Au, is given by the angle fl 
measured from the X~a-direction (Fig. 2), where 

fl = tan-1 [Au3J (9) 

The basic assumption of stress inversion techniques can 
be expressed simply as a = ft. 

The angular difference, 7, between the direction of 
maximum shear stress drop and the direction of slip is 
defined as: 

), = a - ft. (10) 

For equal shear stress drop components,  AOl2 = Ao'13, 

equation (8) indicates that a = 45 °, and substituting 
equations (6a) and (6b) into equation (9) we find fl = 
tan -1 (1 - v). Thus, 7 for a blade-like fault (L >> W) is 
given as 7 -- 45° - tan-1 (1 - v). For the full range of 
Poisson's ratios, 0 < v < 0.5, this corresponds to a range 
of angular discrepancies, 0 < X < 18.43°. 

We have used the computer  program DIS3D (Erick- 
son 1987) as modified by Rubin (1992, appendix A) to 
estimate displacement fields due to slip on a rectangular 
fault plane in an elastic half space loaded by a homo- 
geneous remote stress field (Fig. 3). Equal shear stress 
drop components (Ao12 ---- AO13 ) are prescribed along a 
deeply buried fault, so a -- 45 °. Figure 3 illustrates the 
magnitude of the discrepancy angle, 7, contoured on the 
fault plane for various length-to-width ratios. Note that 
the slip magnitude and direction vary over the surface of 
the fault, with the magnitude falling to zero at the 
rectangular periphery. Because rectangular faults are 
more compliant in their longer dimension, we find fl < a, 
and y is positive. The distribution of 1' does not vary with 
the size of the fault, but rather with the length-to-width 
ratio, L / W .  Also, these results are independent of the 
elastic shear modulus, but they do depend upon Pois- 
son's ratio, which is taken as v = 0.25 for these 
examples. The largest angular discrepancies for the 
rectangular faults are found to occur near the fault 
centers. 

Figure 4 is a plot of the discrepancy angle, 7, at the 
center of the fault plane for length-to-width ratios 
ranging from 1 to 15. Different curves represent differ- 
ent Poisson's ratios. The magnitude of y at the fault 
center for length-to-width ratios exceeding 5:1 ap- 
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proaches (within 1%) the analytical value for infinitely 
long faults. For values of Poisson's ratio typical of rock, 
v < 0.35, the discrepancy angle is less than 12 ° for all 
possible length-to-width ratios. Because these discrep- 
ancies are not large compared to typical errors intro- 
duced during field measurements, or compared to the 
precision estimated for inversion techniques, we con- 
clude that the effect of length-to-width ratio is not 
significant. 

EFFECT OF THE EARTH'S SURFACE 

The boundary conditions on the air-solid interface 
require the shear and normal tractions to be small 
(usually taken as zero) compared to stresses within the 
elastic solid. As a consequence, slip directions on faults 
located near the Earth's surface will be different from 
those on a comparable deeply-buried fault. This will 
affect the magnitude and distribution of the discrepancy 
angle, 7. 

Figures 5(a) & (b) show theoretical contours of y for 
two normal faults, dipping at 60 ° with L = W. The 
boundary conditions are for a pure dip-slip stress drop, 
so Ao13 = 0 and a = 90 °. Figure 5(a) shows the distri- 
bution of ~ on a deeply buried fault plane. The distri- 
bution of 7 differs from that of Fig. 3(a) where the 
boundary conditions are equal strike-slip and dip-slip 
stress drops, so a = 45 °. Figure 5(b) shows the 7 
distribution on a 60 ° dipping normal fault plane which 
intersects the free surface along its upper periphery. 
Compare this distribution to that in Fig. 5(a) and note 
the asymmetry with depth induced by the effect of the 
free surface. 

This example illustrates the fact that proximity of a 
fault to the surface of the earth at the time of slip can 
increase the divergence of the slip direction from the 
direction of maximum shear stress drop. However, 
values of 7 only increase to about +15 °. Furthermore, 
discrepancies contoured near sharp corners in the 
periphery, where the fault plane geometry is likely to be 

unrealistic, probably should be ignored. For this and the 
few other examples we have investigated, the effect of 
the Earth's surface is not much greater than field 
measurement errors or analysis imprecision. We con- 
clude that the effect of the Earth's surface is unlikely to 
be significant. 

EFFECT OF FAULT INTERACTION 

If more than one fault is active in a region, the 
direction of resolved shear stress at a point on a particu- 
lar fault plane is a function of the regional stress field and 
the fault orientation, but also of the relative positions 
and orientations of the other faults, and the slip distri- 
butions on those faults. In general the slip direction on a 
given fault will vary over the fault surface in a complex, 
but continuous manner. Here we examine two typical 
cases of fault interaction, but emphasize that there are 
many other interesting cases that remain to be evalu- 
ated. 

Extensional steps along strike-slip faults 

At right steps along right-lateral faults and left steps 
along left-lateral faults, slip induces local deformation 
characterized by lesser mean compressive stresses and 
extensional strains (Segall & Pollard 1980). A well- 
known example of two overlapping strike-slip fault seg- 
ments occurs in the Imperial Valley of California (Fig. 
6). Here, the Imperial fault extends southeasterly for at 
least 60 km and the Brawley fault extends approximately 
30 km to the northwest. Mesquite Lake occupies the 
depression located at the right step between these two 
right-lateral faults. The 1975 Brawley earthquake swarm 
consisted of 75 events with ME between 3.0 and 4.7 
(Johnson & Hadley 1976). The October 15 1979 Imper- 
ial Valley earthquake (ME = 6.6) ruptured a 30 km 
segment of the Imperial fault with predominant strike- 
slip offsets to the southeast and dip-slip offsets near the 
northwest termination (Sharp et al. 1982). 

Strike-slip motion on either major fault, due to the 
regional stress field, causes a perturbation in the local 
stress field. This perturbation is especially strong near 
the fault periphery and decays with distance from the 
fault, becoming negligible at a distance of a few times the 
fault depth. Here depth is the shortest dimension of 
these vertical strike-slip faults and is taken to be about 8 
km. Therefore, when the Brawley fault slips, the nearby 
Imperial fault experiences a loading caused by both the 
regional stress field and the local stresses. The direction 
of subsequent slip on the Imperial fault will be governed 
by the combined stress fields. 

To ascertain how slip on one strike-slip fault influ- 
ences the slip distribution on the other, we impose 
boundary conditions of pure strike-slip stress drop on 
vertical faults with upper peripheries at the free surface. 
Figure 7(a) shows values of 7 contoured on the model 
Imperial fault with no slip on the Brawley fault, whereas 
Fig. 7(b) shows the ~, distribution on the model Imperial 
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Fig. 6. Map of two overlapping right-lateral right-stepping faults in 
the Imperial Valley, California (after Johnson & Hadley 1976). 
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fault with slip on the Brawley fault. For this geometry,  
the discrepancy angle is not particularly altered by 
interaction. Note however,  that at depth near the north- 
ern end of the Imperial fault (labeled A '  on Figs. 6 and 
7), where interaction with the Brawley fault is greatest, 7 
values are increased by about a factor of two. If the 
terminations of the two faults were closer together,  the 
discrepancy angles would be greater,  but for the geom- 
etry of Fig. 6 values of 7 are not large enough to 
jeopardize the stress inversion techniques. 

Next consider another  common geometry,  found in 
the same area (Fig. 6), consisting of a normal fault 
striking at 45 ° to the Imperial fault and extending from 
its northern termination. The model normal fault dips 
60 ° to the east. For  the sake of this example we specify 
remote boundary conditions consisting of the greatest 
horizontal compressive stress, SH, oriented at 45 ° to the 
trace of the Imperial fault, the least horizontal compres- 
sive stress, Sh, oriented perpendicular to the trace of the 
normal fault, and the vertical intermediate stress, Sv. 
Thus, the resolved remote stress acting alone would 
result in pure strike-slip shear stress on the Imperial fault 
and pure dip-slip shear stress on the normal fault. 
However ,  when interaction is considered the right- 
lateral motion of the strike-slip fault imparts a consider- 
able right-lateral shear stress on the normal fault. 

Figure 8 illustrates the distribution of Y on the Imper- 
ial fault and the normal fault. The active segment of the 
Imperial fault is 16 km long and 8 km deep. The normal 
fault extends 4 km along strike and 6 km down dip. The 
value of 7 is controlled by the ratio (SH - S h ) / ( S v  - Sh), 
which in this example was taken to be 2. That  is, the 
vertical stress is the average of the two horizontal princi- 
pal stresses. Note that the magnitude of 7 on the normal 
fault exceeds 15 ° over about 75% of the fault and reaches 
a maximum of about 25 °. 

The magnitude of 7 on the normal fault increases as 
the length of the strike-slip fault increases. The angular 
discrepancy also increases as SH rotates toward the 
strike of the Imperial fault, so the remote resolved shear 
stress on the normal fault becomes left-lateral. The 
magnitude of ), also increases as the stress ratio (SIj - 
S h ) / ( S v  - Sh) increases. If fault friction is introduced, 
then the stress drop on the strike-slip fault Ao'13 is less 
than 0.5(SH -- Sh), and the relevant stress ratio that 
controls the magnitude of 7 becomes A 0 1 3 / [ 0 . 5 ( S  v - 

Sh)]. This means that Sv must be closer to Sh than to SH in 
order  to produce the same values of 7 shown in Fig. 8. 

Although the sensitivity of 7 to the various parameters 
in these models has not been explored fully, it is clear 
that the slip direction along small faults near the ends of 
larger faults can deviate significantly from the direction 
of resolved shear stress due to the remote loads. For 
fault geometries such as this, the basic assumption of the 
stress inversion techniques is not valid. 

Conjugate faults 

Conjugate faults have been described at scales ranging 
from outcrop to crustal and often are interpreted as 
forming in one episode of deformation with a constant 
regional stress field. In rare instances the relative ages of 
slip have been documented,  verifying that members of 
two sets of faults were active in an alternating sequence 
(Zhao & Johnson 1991). For conjugate faults that are 
widely spaced relative to their lengths the effect of fault 
interaction will be weak, so slip direction is controlled by 
the regional stress field. However ,  for closely-spaced 
conjugate faults, interaction may be significant. Here  we 
describe an example of the effect of mechanical inter- 
action of conjugate faults on the discrepancy angle, 7, as 
it depends on the spatial density of the faults. 
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Fig. 7. Contours of discrepancy angle, 7, on a model of a section of the Imperial fault. (a) No interaction with the Brawley 

fault. (b) Including interaction with the Brawley fault. 

Figure 9(a) shows the model consisting of four faults, 
each perpendicular to the (x~, x~)-plane and oriented at 
+ 30 ° or - 3 0  ° to the x~-direction. The scale bar indicates 
the uniform fault depth in the x~-direction. The (x~, 
x~)-plane is taken as a traction-free surface, so this 
model can be thought of as a set of vertical, strike-slip 
faults. We impose a remote uniaxial compressive stress, 
--O'~ 1, in the x~-direction and set all other  remote stresses 
to zero. This boundary condition results in a maximum 
resolved shear stress which acts in the (x~, x~)-plane on 
each fault plane. 

The left-lateral fault labeled A - A '  is singled out and 
contours of 7 on the fault plane are illustrated in Fig. 
9(b). The maximum resolved regional shear stress acts in 
the x~-direction on this fault plane so a = 0 ° and 7 = - f t .  
The pattern of 7 contours is very similar to that in Fig. 
5(a) if rotated 90 ° to account for the different direction 
of shear stress. The slight asymmetry of contours in the 
xf-direction is due to the free surface effect, and the 
asymmetry in the xf-direction is due to minor interaction 
with neighboring faults. The magnitude of 7 increases 
toward the corners of the fault periphery to a maximum 
of about 12 ° . 

A histogram of discrepancy angles, 7, over all four 
faults of Fig. 9(a) is shown in Fig. 10(a). This histogram 
was constructed by computing 7 at 81 uniformly distrib- 
uted locations (not including fault peripheries) on each 
of the four faults. The 324 values of 7 were grouped into 
1 ° classes, the number  of values in each class is calcu- 
lated, and these numbers are plotted on the histogram. 
The distributions of 7 values is nearly symmetrical and 
centered with a strong peak at 0 °. The maximum discrep- 

ancies are +11 °. We conclude that mechanical inter- 
action does not play a significant role in changing the 
values of 7 for the low spatial density of conjugate faults 
chosen for this example. 

Our second example consists of 11 faults, the original 
four faults and seven additional faults, in a region of the 
same size (Fig. l l a ) ,  so the faults have a higher spatial 
density than those in Fig. 9(a). The same remote stress 
boundary condition is applied and contours of 7 on the 
left-lateral fault A - A '  are illustrated in Fig. 9(b). The 
lack of symmetry in any direction on the fault plane is 
indicative of significant mechanical interaction with 
neighboring faults. Values of 7 range from a minimum of 
about - 3 5  ° to a maximum of about +10 °. 

A histogram of descrepancy angles (Fig. 10b) was 
constructed by computing 7 at 36 uniformly distributed 
locations on each of the 11 faults for a total of 396 values. 
The distribution of 7 on the histogram ranges from - 4 0  ° 
to +26 ° and the peak values are centered to the positive 
side of 0 °. These results illustrate that a higher spatial 
density of faults can enhance mechanical interaction and 
alter slip directions. In some cases the slip directions are 
significantly different (>15 ° ) from the direction of 
resolved regional shear stress, and points with these 
large angular discrepancies are not necessarily located 
near sharp corners of fault peripheries. 

The stress inversion techniques discussed in the sec- 
tion Introduction and Background do not consider local 
stress perturbations caused by nearby faults. This conju- 
gate fault example shows how one of the basic assump- 
tions of stress inversion techniques may be violated and 
casts some doubt on the ability of these techniques to 

(a) 

~ o  

~ - t  
~ - 2  

Imperial Fault Segment 

\ 

(b) Normal Fault 

,' kk\_  
I~, "-20-------I" 
11~:2o 18...--I~ 

Fig. 8. Contours of discrepancy angle, y, on a model of a segment of the Imperial fault and on the adjacent normal fault. 
Mechanical interaction is included. 
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(a) Co) 

A 6 7  / k ~-~- A' 

I / /  

Fig. 9. Model conjugate faults of low spatial density. (a) Geometry of four conjugate faults in map view. (b) Contours of 
discrepancy angle, y, on fault A-A' due to interaction with free surface and with neighboring faults. 

predict stress tensors correctly in regions of high fault 
densities. 

CONCLUSIONS 

Our analysis suggests that slip directions on certain 
faults will be controlled primarily by a homogeneous 
regional state of stress and the orientation of the fault 
plane. In these cases the basic assumptions of stress 
inversion techniques are valid. On the other hand, we 
have shown that slip directions on other faults can be 
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Fig. 10. Histograms of numbers of conjugate fault segments with 
common discrepancy angles, X. (a) Numbers for 81 uniformly-spaced 
locations on each of the four fault planes in Fig. 9. (b) Numbers for 36 

uniformly-spaced locations on each of 11 fault planes in Fig. 1 I. 

strongly influenced by local factors, such as fault inter- 
action. In these cases the basic assumptions of the 
inversion techniques are open to question. 

The simple examples used here are meant to illustrate 
the concept that the direction of shear stress drop and 
slip do not always coincide on a fault plane, and also that 
a homogeneous stress field may be a poor approximation 
in the vicinity of a fault. For models of single rectangular 
faults that we have examined, the slip directions 
deviated by less than 20 ° from the direction of stress 
drop. Over most of the fault surface the angular discrep- 
ancies are less than 10 °. These angles are within the 
precision of many field data measurements and stress 
inversion analyses (e.g. Gephart & Forsyth 1984). 

On the other hand, the example of a normal fault near 
the termination of a larger strike-slip fault demonstrates 
that discrepancy angles can be significant where faults 
interact. The stress inversion techniques are usually 
applied to a population of many faults. Our example 
involving a population of mechanically interacting con- 
jugate faults illustrates the potential for some fault 
geometries and spatial densities to result in large dis- 
crepancies (up to 40 ° in this case) between shear stress 
drop and slip directions. Such discrepancies may ad- 
versely affect the stress tensors computed by the inver- 
sion techniques. 

To test this assertion, we are designing a set of 
numerical experiments in which synthetic data on slip 
directions, generated for sets of model faults using 
DIS3D, are used as input for one or more of the stress 
inversion programs. The regional stress tensor esti- 
mated by inversion could then be compared to the 
known stress tensor used as the boundary condition for 
the model. These studies should provide a more com- 
plete evaluation of the inversion techniques for dense 
arrays of natural faults. 
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Fig. 11. Model conjugate faults of high spatial density. (a) Geometry of 11 conjugate faults in map view. (b) Contours of 
discrepancy angle, 7, on fault A - A '  due to interaction with free surface and with neighboring faults. 
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APPENDIX 

We have used the program DIS3D (Erickson 1987) to compute the 
angular discrepancy between the slip direction and the resolved shear 
stress along faults. The program is based on analytic solutions for the 
static elastic stress and displacement fields due to a uniform step 
discontinuity in displacement across rectangular faults in an elastic 
half-space (Converse 1973). This solution was found using the point 
force solutions of Volterra (1907). The program was modified by 
Rubin (1992) to approximate numerically the case of a prescribed 
stress boundary condition along a single or several interacting faults, 
using a boundary-element method similar to that described for two 
dimensions (Crouch 1979, Crouch & Starfield 1983). 
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The faults are embedded within a region subjected to a uniform 
remote stress field, and either a stress boundary condition or a 
coefficient of friction is specified for each fault plane. Each fault is then 
subdivided into a grid of rectangular subfaults, and uniform displace- 
ments are applied to the subfaults such that the shear stress at the 
center of each is equal either to the prescribed stress or to the 
coefficient of friction times the normal stress. By subdividing the faults 
into finer and finer grids, the numerical solution can be made increas- 
ingly accurate. The slip direction of each subfault can then be com- 
pared to the direction of resolved remote shear stress on the fault plane 
to calculate the discrepancy angle. 

Fault slip can influence the slip direction of neighboring faults (or 
neighboring regions of the same fault) directly, by perturbing the shear 

stress on those surfaces, or indirectly, by changing the normal stress 
acting across those surfaces. Changing the normal stress results in a 
change in slip magnitude through the influence of the coefficient of 
friction, and this may lead to changes in fault interaction and hence slip 
direction. In the examples cited in this paper, the coefficient of friction 
has been set to zero. This is equivalent to examining changes in slip 
direction that result only from the shear stress perturbation due to fault 
slip. 

The original computer program DIS3D (in FORTRAN for UNIX 
operating systems) and a users manual are available by writing to 
D. D. Pollard, Geology Department, Stanford University, Stanford, 
CA 94305, U.S.A. A modest fee will be charged for mailing, printing 
and media costs. 


